

CEOS AC-VC Whitepaper

David Crisp, Jet Propulsion Laboratory, California

Institute of Technology

CEOS Chair Priority Workshop on GHG Monitoring

European Commission Joint Research Centre,

Ispra, Italy

18-19 June 2018

AC-VC White Paper

Chapters

Contributions from participants at the CEOS SIT and CEOS AC-VC meetings were incorporated into the White Paper structure:

Executive Summary

- 1. Introduction
- 2. Using atmospheric GHG measurements to improve inventories
- 3. Space-based GHG measurement capabilities and near term plans
- 4. Lessons Learned from SCIAMACHY, GOSAT and OCO-2
- 5. Integrating GHG Satellites into Operational Constellations
- 6. Towards an operational constellation measuring anthropogenic CO₂ emissions
- 7. The Transition from Science to Operations
- 8. Conclusions

Past and Present GHG Satellites

- SCIAMACHY (2002-2012) First sensor to measure O₂, CO₂, and CH₄ using reflected NIR/SWIR sunlight
 - Regional-scale maps of X_{CO2} and X_{CH4} over continents

- GOSAT (2009 ...) First Japanese GHG satellite
 - FTS optimized for high spectral resolution over broad spectral range, yielding CO₂, CH₄, and chlorophyll fluorescence (SIF)

- OCO-2 (2014 ...) First NASA satellite to measure O₂ and CO₂ with high sensitivity, resolution, and coverage
 - High resolution imaging grating spectrometer small (< 3 km²)
 footprint and rapid sampling (10⁶ samples/day)

- TanSat (2016 ...) First Chinese GHG satellite
 - Imaging grating spectrometer for O₂ and CO₂ bands and cloud & aerosol Imager
 - o In-orbit checkout formally complete in August 2017

The Next Generation

- Feng Yun 3D (2017) Chinese GHG satellite on an operational meteorological bus
 - o GAS FTS for O₂, CO₂, CH₄, CO, N₂O, H₂O
- Sentinel 5p (2017) Copernicus pre-operational Satellite
 - TROPOMI measures O₂, CH₄ (1%), CO (10%), NO₂, SIF
 - Imaging at 7 km x 7 km resolution, daily global coverage
- Gaofen 5 (2018) 2nd Chinese GHG Satellite
 - Spatial heterodyne spectrometer for O₂, CO₂, and CH₄
- GOSAT-2 (2018) Japanese 2nd generation satellite
 - o CO as well as CO₂, CH₄, with improved precision (0.125%), and active pointing to increase number of cloud free observation
- OCO-3 (2019) NASA OCO-2 spare instrument, on ISS
 - First CO₂ sensor to fly in a low inclination, precessing orbit

Future GHG Satellites (2)

- CNES/UK MicroCarb (2021+) compact, high sensitivity
 - Imaging grating spectrometer for O₂ A, O₂ ¹Δ_g, and CO₂
 - ~1/2 of the size, mass of OCO-2, with 4.5 km x 9 km footprints
- CNES/DLR MERLIN (2021+) First CH₄ LIDAR (IPDA)
 - Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, inter-hemispheric gradients and continental scale annual CH₄ budgets
- NASA GeoCarb (2022*) First GEO GHG satellite
 - Imaging spectrometer for X_{CO2}, X_{CH4}, X_{CO} and SIF
 - Stationed above ~85° W to view North/South America
- Sentinel 5A,5B,5C (2022) Copernicus operational services for air quality and CH4
 - Daily global maps of XCO and XCH4 at < 8 km x 8 km

GHG Mission Timeline

- A broad range of GHG missions will be flown over the next decade.
- Most are "science" missions, designed to identify optimal methods for measuring CO₂ and CH₄, not "operational" missions designed to deliver policy relevant GHG products focused on anthropogenic emissions

GCOS CO₂ and CH₄ Requirements.

The CO₂ and CH₄ measurement requirements in the 2011 update for the Global Climate Observing System (GCOS) Systematic Observation Requirements for Satellite-Based Data Products for Climate (GCOS, 2011) and GCOS 2016 Implementation Plan (GCOS, 2016) were adopted as targets for a future GHG constellation.

Variable / Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability/ Decade*	Stability/ Decade**
Tropospheric CO ₂ column	5-10km	N/A	4 h	1 ppm	0.2 ppm	1.5 ppm
Tropospheric CO ₂	5-10 km	5 km	4 h	1 ppm	0.2 ppm	1.5 ppm
Tropospheric CH ₄ column	5-10 km	N/A	4 h	10 ppb	2 ppb	7 ppb
Tropospheric CH ₄	5-10 km	5 km	4 h	10 ppb	2 ppb	0.7 ppb
Stratospheric CH ₄	100-200 km	2 km	Daily	5%	0.30%	0.30%

^{*} from GCOS 2011

^{**} from GCOS 2016

Timely inputs to policy makers

A Candidate GHG Constellation Architecture

The accuracy, precision, resolution, and coverage requirements could be achieved with a constellation that incorporates

- A constellation of 3 (or more) satellites in LEO with
 - A broad (> 200) km swath with a mean footprint size < 4 km²
 - A single sounding random error near 0.5 ppm, and vanishing small regional scale bias (< 0.1 ppm) over > 80% of the sunlit hemisphere
 - One (or more) satellites carrying ancillary sensors (CO, NO₂, CO₂ and/or CH₄ Lidar)
- A constellation with 3 (or more) GEO satellites
 - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere)
 - Stationed over Europe/Africa, North/South America, and East Asia
- This constellation could be augmented with one or more HEO satellites to monitor carbon cycle changes in the high arctic

Future LEO GHG Constellations in the Planning Stages

- Copernicus CO₂ Sentinel (2025+)
 - 3 or 4 LEO satellites in an operational GHG constellation
 - Primary instruments measure O₂ (0.76 μm A-band),
 CO₂ (1.61 and 2.06 μm), CH4 (1.67 μm) and NO₂
 (0.450 μm) at a spatial resolution of 2 km x 2 km along a 200-300 km swath
 - A dedicated cloud/aerosol instrument is also under consideration

TanSat-2 Constellation

- 6 satellites, with 3 flying in morning sun-synchronous orbits and 3 flying in afternoon sun-synchronous orbits
- primary GHG instrument on each satellite with measure CO₂ (1.61 and 2.06 μm), CH₄ and CO (2.3 μm) as well as the O₂ A-band (0.76 μm) across a 100-km crosstrack swath

TanSat Constellation

Merging Science and Operations

- Because of the unprecedented requirements for precision and accuracy, the space based elements of the an operational GHG constellation architecture must be accompanied by
 - Rigorous pre-launch and on-orbit measurement calibration and product validation methods that evolve to meet emerging needs
 - Continuous refinements in remote sensing retrieval and flux inversion modeling methods that improve the products over time
- CEOS could play an essential role in coordinating these activities among its partner agencies
- Any operational architecture will also have to address
 - orbit and mission coordination, data distribution, data exchange, and data format requirements
 - Training and capacity building and public outreach will be needed to fully exploit the value of the space based GHG measurements
- CEOS should collaborate with CGMS and other operational organizations to foster the development of these capabilities